調整後の貯蓄: ミネラルの枯渇 (GNI の%)の世界ランキング1970〜2021年【国別順位】
1970〜2021年の調整後の貯蓄: ミネラルの枯渇 (GNI の%)について、各国の世界ランキングを表形式にして、国別順位をまとめました。
2021年の1位はコンゴ民主共和国で22.7、2位はザンビアで21、3位はマリ共和国で13.2でした。
鉱物枯渇は、残りの埋蔵寿命(上限は 25 年)に対する鉱物資源の在庫価値の比率です。錫、金、鉛、亜鉛、鉄、銅、ニッケル、銀、ボーキサイト、リン酸塩が対象となります。
【英語版はこちら】
調整後の貯蓄: ミネラルの枯渇 (GNI の%)の国別の推移グラフ【1970〜2021年】
調整後の貯蓄: ミネラルの枯渇 (GNI の%)
調整後の貯蓄: ミネラルの枯渇 (GNI の%)の世界ランキング 2021
表示年度: 2021年
-
+
順位 | 国 | 調整後の貯蓄: ミネラルの枯渇 (GNI の%) | 前年比 | |
---|---|---|---|---|
検索: | ||||
1 | ![]() | 22.7 | 387.63% | |
2 | ![]() | 21 | 276.15% | |
3 | ![]() | 13.2 | 138.49% | |
4 | ![]() | 12.6 | 264.75% | |
5 | ![]() | 11.5 | 263.03% | |
6 | ![]() | 9.41 | 252.31% | |
7 | ![]() | 9.22 | 94.21% | |
8 | ![]() | 9.15 | 348.41% | |
9 | ![]() | 7.64 | 282.04% | |
10 | ![]() | 7.22 | 286.15% | |
11 | ![]() | 6.61 | 2365.59% | |
12 | ![]() | 6.51 | 120.20% | |
13 | ![]() | 5.54 | 18.56% | |
14 | ![]() | 5.35 | 69.50% | |
15 | ![]() | 4.65 | 1279.67% | |
16 | ![]() | 4.49 | 88.09% | |
17 | ![]() | 4.48 | NaN% | |
18 | ![]() | 4.47 | 147.80% | |
19 | ![]() | 4.36 | 124.92% | |
20 | ![]() | 3.77 | 219.46% | |
21 | ![]() | 3.33 | 295.63% | |
22 | ![]() | 3.13 | 242.93% | |
23 | ![]() | 3.07 | 79.35% | |
24 | ![]() | 2.65 | 158.87% | |
25 | ![]() | 2.29 | 138.99% | |
26 | ![]() | 2.22 | 5527.48% | |
27 | ![]() | 2.18 | 219.70% | |
28 | ![]() | 1.89 | 244.80% | |
29 | ![]() | 1.85 | 210.86% | |
30 | ![]() | 1.74 | 4747.07% | |
31 | ![]() | 1.69 | 180.41% | |
32 | ![]() | 1.48 | 306.83% | |
33 | ![]() | 1.42 | 76.36% | |
34 | ![]() | 1.33 | 799.54% | |
35 | ![]() | 1.25 | 327.79% | |
36 | ![]() | 1.13 | 301.04% | |
37 | ![]() | 1.06 | 66.08% | |
38 | ![]() | 0.946 | 111.58% | |
39 | ![]() | 0.927 | 145.41% | |
40 | ![]() | 0.895 | 87.09% | |
41 | ![]() | 0.845 | 214.81% | |
42 | ![]() | 0.79 | 481.61% | |
43 | ![]() | 0.759 | 285.00% | |
44 | ![]() | 0.671 | 168.94% | |
45 | ![]() | 0.632 | 292.70% | |
46 | ![]() | 0.557 | 324.20% | |
47 | ![]() | 0.556 | 417.30% | |
48 | ![]() | 0.537 | 169.52% | |
49 | ![]() | 0.474 | 76.45% | |
50 | ![]() | 0.457 | 162.91% | |
51 | ![]() | 0.323 | 53469.43% | |
52 | ![]() | 0.322 | 184.48% | |
53 | ![]() | 0.296 | 126.13% | |
54 | ![]() | 0.28 | 171.02% | |
55 | ![]() | 0.26 | 49.50% | |
56 | ![]() | 0.238 | 256.17% | |
57 | ![]() | 0.206 | 228.12% | |
58 | ![]() | 0.19 | 264.91% | |
59 | ![]() | 0.175 | 192.99% | |
60 | ![]() | 0.167 | 5197.33% | |
61 | ![]() | 0.123 | 58.73% | |
62 | ![]() | 0.116 | 88.71% | |
63 | ![]() | 0.111 | 249.28% | |
64 | ![]() | 0.076 | 159.27% | |
65 | ![]() | 0.063 | 362.85% | |
66 | ![]() | 0.061 | 318.64% | |
67 | ![]() | 0.049 | 479.76% | |
68 | ![]() | 0.041 | 357.86% | |
69 | ![]() | 0.038 | 353.52% | |
70 | ![]() | 0.037 | 196.06% | |
71 | ![]() | 0.036 | 285.88% | |
72 | ![]() | 0.032 | 43.52% | |
73 | ![]() | 0.022 | 98.04% | |
74 | ![]() | 0.021 | 234.87% | |
75 | ![]() | 0.016 | 146.45% | |
76 | ![]() | 0.011 | -9.46% | |
77 | ![]() | 0.01 | NaN% | |
78 | ![]() | 0.01 | 78.42% | |
79 | ![]() | 0.009 | 41.24% | |
80 | ![]() | 0.007 | 56.66% | |
81 | ![]() | 0.007 | 16.79% | |
82 | ![]() | 0.005 | -77.33% | |
83 | ![]() | 0.004 | 227.79% | |
84 | ![]() | 0.003 | 97.00% | |
85 | ![]() | 0 | 53.05% | |
86 | ![]() | 0 | -98.72% | |
87 | ![]() | 0 | 109.76% | |
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | -100.00% | |
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 | ||
88 | ![]() | 0 |